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An expression to describe the force that a chemical bond

exerts on its terminal atoms is proposed, and is used to derive

expressions for the bond force constant and bond compres-

sibility. The unknown parameter in this model, the effective

charge on the atoms that form the bond, is determined by

comparing the derived force constants with those obtained

spectroscopically. The resultant bond compressibilities are

shown to generally agree well with those determined from

high-pressure structure determinations and from the bulk

moduli of high-symmetry structures. Bond valences can be

corrected for pressure by recognizing that the bond-valence

parameter, R0, changes with pressure according to the

equation

dR0=dP � 10ÿ4R4
0=�1=Bÿ 2=R0� AÊ GPa

ÿ1
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1. Introduction

The purpose of this paper is to explore the in¯uence of

external pressure on the lengths of bonds found in inorganic

crystals and to compare its effects with a classical force

constant model. A full understanding of the response of a

crystal to pressure must also take into account the effects of

pressure on the soft van der Waals contacts since in many

compounds the bulk modulus will be determined by these

weaker interactions. Some of these van der Waals contacts

determine the behaviour of the bonds themselves and to that

extent they are implicitly included in the model, but otherwise

they are beyond the scope of the present study. Their effect on

the bulk modulus, even though it may be important, is not

considered in this paper.

Because the development of a quantitative model based on

the properties of chemical bonds requires a clear under-

standing of the underlying assumptions, and because these

assumptions are often not discussed, we review them with

some care in this ®rst section of this paper. In x2 we develop a

quantitative model for the force in a bond from which we

derive expressions for the bond force constant and the bond

compressibility. We compare the model with measurements in

x3 where we show how to correct bond valences for pressure.

We draw the threads together in x4.

1.1. Interaction between atoms: bonds and contacts

The assumption that the forces in a crystal act through

localized bonds is not well supported by theory although it is

often taken for granted. However, recently it has been shown

to be valid in the ionic limit (Preiser et al., 1999) and this

demonstration has been extended to include bonds with
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covalent character (Brown, 2001, p. 30). It is legitimate

therefore to treat a crystal as an array of atoms in which only

neighbouring atoms interact, that is, the only interactions that

need to be considered are those between atoms that are linked

by bond paths in the electron density topology1 (Bader, 1990).

These interactions can be divided into two classes: bonds,

which involve shared valence electrons, and van der Waals

contacts, which do not, the distinction being more carefully

explained below. Both bonds and contacts contribute to the

stabilization of the crystal although they differ considerably in

strength.

It is readily shown that in the classical limit two spherical,

rigid, electrically neutral atoms do not exert any force on each

other when well separated, but as soon as their electron

densities overlap the electrons in one atom will experience the

electric ®eld of the nucleus of the other and pull the two nuclei

together. Atoms thus behave as if they are sticky; they exert

no force on each other until they come into contact, at which

point they attract each other. Since this result applies to all

atoms without exception, all substances, even He, will

condense into solids or liquids at suf®ciently low temperatures.

The attraction between the atoms increases as the overlap of

the electron densities increases and, in the absence of the

Fermi (i.e. Pauli) repulsion, would ultimately cause the atoms

to merge. At some point, however, the Fermi repulsion

becomes equal to the electrostatic attraction and the atoms

reach an equilibrium. How far the atoms overlap depends on

the strength of the Fermi repulsion, which at equilibrium will

be equal, but opposite, to the electrostatic attraction. If the

atoms have partially ®lled valence shells with holes to

accommodate the valence electrons of the other atom, an

appreciable degree of overlap is possible and in this paper the

resulting interaction is called a bond. As the electrostatic

attraction in a bond is large, the interatomic distance is short.

However, if the outer shells of the atoms are ®lled, only a small

overlap is possible, leading to a much larger separation of the

atoms. In this paper such an interaction is called a contact.2

When partially ®lled valence shells overlap, the valence

electrons of one atom form electron pairs with those of the

other atom. The number of electron pairs (usually non-inte-

gral) associated with the bond is a measure of its strength.

There are a variety of ways in which this strength can be

determined. In the ionic model it is equal to the electrostatic

¯ux linking the two ions, but the ¯ux does not depend on

whether the bond is ionic or covalent since it depends only on

the number of bonding electrons and not where they reside in

the bond (Brown, 2001, p. 30). For equilibrium structures,

Preiser et al. (1999) showed that the ¯ux associated with a

bond is the same as the empirical bond valence which can be

calculated from the bond length (x1.2) or, if the structure has

no internal strain (x2.4), from the topology of the bond

network. The greater the overlap between the atoms, the

larger the bond ¯ux or bond valence and hence the greater the

attractive force that the bonding electrons exert on their

terminal atoms.

Any atom in a structure at equilibrium experiences zero net

force acting on it. For a diatomic molecule, the attractive

electrostatic force must therefore be exactly equal to the

repulsive Fermi force, and since the net force is the derivative

of the potential energy, the bonding energy is a minimum

(Fig. 1). The distance between the atoms under these condi-

tions is called the natural length of the bond or contact. If the

bond or contact is stretched by the application of some

external force, it exerts a net attractive force pulling its

terminal atoms together; if it is compressed, it exerts a

repulsive force pushing its terminal atoms apart.

In a solid the situation is more complex. Since each atom

forms several bonds, the net force acting on an atom may still

be zero even when the bonds individually exert forces. For

example, in NaCl the net force acting on each atom is neces-

sarily zero by symmetry even though the NaÐCl bonds may

be either all attracting or all repelling their terminal atoms. In

this case a second condition is needed to determine the

equilibrium bond force, namely, there must be a balance

between those bonds and contacts that attract their terminal

atoms and those that repel them. If this were not so, the crystal

as a whole would contract or expand.

An analysis of the electron density topology in NaCl shows

that each Cl atom interacts with its 12 Cl second-neighbours as

well as the expected six Na ®rst-neighbours, all 18 atoms being

linked by electron density bond paths (PendaÂs et al., 1998).

However, since the valence shells of the Cl atoms are full

(after forming bonds with Na), the interactions between Cl

atoms are contacts while the interactions between Na and Cl

atoms are bonds, each involving 1/6 valence electron pairs. The

balance of forces that prevents the equilibrium structure of

NaCl from expanding or contracting is therefore a combina-

tion of the bond force acting between neighbouring Na and Cl

Figure 1
Schematic graph showing the variation of bond energy with interatomic
distance for bonds and contacts. The different energy and force regimes
are indicated.

1 In some cases three-body interactions related to the electronic structure of
the atom are important, but these cases are not considered here.
2 The attraction in a contact derives from van der Waals dispersion forces that
are not properly modelled using classical electrostatic theory, but since this
attraction is much weaker than that in a bond, it is often ignored and does not
form part of the quantitative model developed below. The classical model can,
therefore, still be used in this analysis.



atoms and the contact force acting between neighbouring Cl

atoms. Since the Cl atoms are drawn together by being bonded

to a common Na atom, their separation is shorter than their

natural length. The contact therefore exerts a net repulsive

force on the two Cl atoms. To compensate, the NaÐCl bond

must exert an attractive force on the Na and Cl atoms, which

means the NaÐCl bond must be longer than its natural length,

i.e. the NaÐCl bond is stretched.

Both bonds and contacts lower the energy of a crystal,

although the binding energy associated with a bond is much

greater than that associated with a contact (Dunitz &

Gavezzotti, 1999). As shown in Fig. 1, the interaction energy

has its largest negative value when the atoms are separated by

their natural length. Although small differences from the

natural length result in the bond exerting an attractive or

repulsive force on its terminal atoms, the binding energy

remains negative and changes very little. Only when the bond

or contact becomes unphysically short will it be destabilizing,

i.e. will the binding energy be positive.

1.2. The bond-valence model

Before attempting a quantitative examination of the forces

exerted by bonds and contacts, it is useful to review the

equations of the bond-valence model which provides the

simplest way to determine the number of electron pairs

associated with the different bonds and hence the bond

lengths. Full details of the model are given in Brown (2001).

Discussion of contacts is deferred to the following section

since, by de®nition, they are not associated with bonding

electron pairs.

In the ionic limit, Gauss' theorem requires that the sum of

the ¯uxes (i.e. bond valences), Sij, received by atom i from the

bonds it forms with its ligands, j, be equal to its formal ionic

charge, Vi, that is the number of valence electrons the atom

uses in bonding. This is expressed by the valence-sum rule

Vi �
P

j

Sij; �1�

the summation being made over all the bonds formed by the

atom. In addition, the ¯ux is distributed between the bonds

according to the principle of maximum symmetry which states

that a system in equilibrium will have the highest symmetry

allowed by the constraints [such as (1)] acting on it. This

condition is expressed by the equal valence rule as shown in

the Appendix of Brown (1992) as

0 � P
loop

Sij; �2�

where the summation, having regard to the direction of the

¯ux, is performed around any closed loop in the bond

network.

Equations (1) and (2), which are equivalent to the Kirchhoff

equations used to solve electric networks, can be solved for the

bond network to give a unique ¯ux for each bond. From this

bond ¯ux the length of the bond, Rij, can be calculated using

the empirical expression

Rij � R0 ÿ B ln�Sij�; �3�

where R0 and B are constants that are ®tted to observed bond

lengths under the constraint that (1) is obeyed. Values of these

constants, which depend only on the nature of the terminal

atoms, can be found in Brown & Altermatt (1985), Brese &

O'Keeffe (1991) and Brown (2002). Equations (1) and (2) can

be used to determine the ¯ux associated with each bond, while

(3) is related to the Fermi repulsion that determines how close,

for a given bond ¯ux, the atoms can approach each other.

There are a number of important consequences of these

three equations.

(i) It is possible to predict the length of each bond in a

crystal provided that we know which atoms are bonded and

provided there are no internal strains such as may be caused

by the steric effects described in x2.4.

(ii) Although the equations are based on a localized bond

model, they take into account the long-range Coulomb inter-

actions, since any change in the ¯ux (valence) of one bond

causes a relaxation of the ¯uxes of all the other bonds in the

structure. The reason the localized bond model works is that at

equilibrium the atoms adopt an arrangement in which the ®rst

neighbours screen out the in¯uence of more distant neigh-

bours.

(iii) The natural length of a bond depends on its ¯ux

(valence). A bond with a large ¯ux has a shorter natural length

than a bond with a small ¯ux. The bond ¯ux in turn depends

on the formal ionic charges and the coordination numbers, not

only of its terminal atoms, but also of its more distant neigh-

bours. Making any change in the structure results in a redis-

tribution of the bond ¯ux, producing a change in the length of,

and force exerted by, all of the bonds.

(iv) The empirical nature of (3) automatically compensates

for a number of systematic effects including the in¯uence of

the contacts between ligands as discussed in x2.2.

1.3. Contacts

While the behaviour of a bond depends on many factors,

e.g. formal oxidation state and coordination number, which

are speci®c to the particular crystal in which the bond occurs,

the behaviour of contacts is much simpler. Owing to the

weakness of their attractive force their natural lengths are

typically large (> 3 AÊ ). Since their length in a crystal is

determined by the lengths of the bonds in their associated

coordination spheres, contacts are usually much shorter than

their natural length and they therefore exert a repulsion on

their terminal atoms. In order to prevent the crystal from

expanding under these forces, the bonds must, on average,

exert a net attractive force on their terminal atoms. This means

that most bonds, although not necessarily all, will be stretched,

but whether they exert attractive or repulsive forces, the bonds

are usually close to their natural lengths and the forces they

exert on their terminal atoms are relatively small. Fig. 1 shows

the potential energy of two atoms as a function of their

separation. The minimum in the potential energy occurs at the

natural length, but the stretching or compression that occurs in

Acta Cryst. (2003). B59, 439±448 I. David Brown et al. � Lengths of chemical bonds 441

research papers



research papers

442 I. David Brown et al. � Lengths of chemical bonds Acta Cryst. (2003). B59, 439±448

the bonds and contacts found in crystals means that the

observed distance will in general be larger or smaller than the

natural length, the negative slope of the graph giving the force

experienced by the terminal atoms.

2. Theory

The quantitative model of the force exerted by a bond on its

terminal atoms, introduced in this section, is used to calculate

the bond force constant and the bond compressibility.

2.1. Forces acting in bonds

As described qualitatively in x1, the attractive force in a

bond is assumed to arise from the electrostatic attraction of

the bondong electrons on two terminal atoms. The repulsive

force is assumed to be the Fermi force arising from the overlap

of the electron densities of the ®lled shells of the atoms. In this

section we develop an expression for the net force exerted by

a bond. We use the ionic model, recognizing that the ¯ux is the

same for both ionic and covalent bonds (Brown, 2001, p. 30).

There is no simple way of expressing the electrostatic force

acting in a bond in terms of the electrostatic ¯ux connecting

the two bonded atoms, so, in the spirit of the ionic model, we

write the attractive force as the force between two point

charges, q,

Fa � ÿkoq2=R2; �4�
where ko = 1/4�"o = 23 nN AÊ 2 electronsÿ2 (or

2300 GPa AÊ 4 electronsÿ2), R is the bond length in AÊ , i.e. the

separation between the ion centers where the point charges

representing the ions are assumed to reside, and q is the

effective charge carried by the terminal ions. For convenience

the modulus of q is used since its sign is included explicitly in

the equation, so that each of the items on the right-hand side is

positive and the negative sign indicates that Fa, representing a

force of attraction acting on the atoms, is negative. The charge,

q, is unknown but it is of the order of the electronic charge and

is expected to be related in some way to the electrostatic ¯ux

of the bond. It is evaluated empirically in x3.2.

There is also no simple theory by which the Fermi force can

be derived, but since it is the Fermi force that determines the

length of the bond it is reasonable to suppose that it has the

same exponential form as that given in (3) with the same

softness constant, B. We therefore write the repulsive force in

a bond, Frb, as

Frb � A exp�ÿR=B�; �5�
where A is a (positive) ®tted constant, R is the bond length

and B is the softness parameter, assumed here following

Brown & Altermatt (1985) to be 0.37 (5) AÊ .

2.2. Forces acting in a coordination polyhedron

In this section we show that the repulsions exerted by the

contacts between the ligands in any given coordination poly-

hedron are automatically included in the bond repulsion term

when the repulsion constant A is determined empirically.

Consider the case of an isolated atom, M, surrounded by six

atoms, X, to form a regular MX6 octahedron (Fig. 2). At

equilibrium the net force acting on each atom must be zero.

This will always be the case for the central M atom because of

the symmetric arrangement of the bonds. However, this is not

the case for the ligands. The net force acting on a ligand is

directed along the bond and has the value

0 � Fa � Frb � 4Frc=21=2; �6�

where Fa and Frb are de®ned by (4) and (5), respectively, and

Frc is the net repulsive force exerted by each of the four XÐX

contacts. As long as Frb and Frc both have the form of (5) and

the same value of B, the two repulsive forces can be replaced

by a single repulsive force of the same form. Since the constant

A is determined using the observed equilibrium distances, Re,

measured around atoms that are already surrounded by

ligands, the repulsions exerted by the interligand contacts are

automatically included in the determination of A.

Similar arguments apply to other polyhedra and, since B has

been determined using bond lengths observed in environ-

ments with a variety of coordination numbers, the different

coef®cients of the Frc term in (6) for different coordination

polyhedra are also implicitly taken into account. The contacts

that are not taken into account in this analysis are those

between atoms that are not part of the same coordination

sphere. Where these occur and are important, e.g. in quartz,

they may result in the crystals being more compressible than

would be expected from the bond compressibilities alone.

2.3. Evaluation of A

We can evaluate A by setting the net effective force acting

in a bond to zero when R = Re, the observed equilibrium bond

length for coordinated cations. Although the bonds and

contacts under these conditions do exert small forces as

discussed in the previous section, we are only interested in the

effective force acting on the bond, that is the force adjusted for

the effects of anion±anion repulsion. From (4) and (5),

therefore,

A exp�ÿRe=B� ÿ koq2=R2
e � 0; �7�

Figure 2
Bonds (solid lines) and contacts (broken lines) in an MX6 coordination
sphere.



where Re is de®ned as the ideal bond length, i.e. the bond

length observed in a given coordination polyhedron. It is

longer than the natural length because of the anion±anion

repulsion, but it is the bond length expected in a crystalline

solid in static equilibrium provided that no other constraints3

are present. In this work we examine how the force exerted by

a bond changes when this ideal state is subject to some

external constraint such as the application of hydrostatic

pressure.

Equation (7) can be rearranged to give an expression for A

in terms of Re,

A � koq2=�R2
e exp�ÿRe=B��; �8�

which can be substituted back into (5) to give the repulsive

force,

Fr � �koq2=R2
e� exp�ÿ�Rÿ Re�=B�

� �koq2=R2
e� exp�ÿ�R�=B�; �9�

where �R = R ÿ Re and Fr, the effective Fermi repulsion, has

been written for Frb, to indicate that the effects of anion±anion

repulsion have been included.

If the bond is strained by some mechanism not considered

so far, so that it has a length R, then he bond exerts an

effective force Fe on its terminal atoms given by the sum of its

(negative) attractive component and its (positive) repulsive

component at the new distance, R [cf. (7)],

Fe � ÿkoq2=R2 � A exp�ÿR=B�: �10�
Substituting for A from (8) gives

Fe � ÿ�koq2=R2��1ÿ �R=Re�2 exp�ÿ�R=B��; �11�
which is the effective force exerted by a bond on its two

terminal atoms in terms of R, Re and q. As required, Fe = 0

when R = Re.

2.4. What happens when the coordination polyhedron is
placed in a crystal?

When the coordination polyhedra are assembled to form a

crystal two things may occur. Firstly, since the ligand atoms

will bond to other atoms in the crystal, they may no longer be

equivalent. Solving (1) and (2) may result in the bonds formed

by a given atom having different ¯uxes and hence different

values of Re and q. Thus, the ideal bond lengths may be

changed but Fe would still be zero in the equilibrium structure.

Secondly, some bonds may have to be stretched and some

compressed in order to make all parts of the structure ®t

together in three-dimensional space, causing Fe to be different

from zero. Such structures are said to be internally strained. It

is convenient therefore to divide Fe into two, a force, Fint,

which results from the internal strains, and a force, Fext, which

results from the application of external constraints, such as

temperature or pressure, on the crystal. Either of these forces

may result in the bond lengths deviating from their ideal

length, Re. Thus, from (11),

Fe � Fext � Fint � ÿ�koq2=R2��1ÿ �R=Re�2 exp�ÿ�R=B��:
�12�

To simplify the theory, the model is developed on the

assumption that Fint is zero, which is the case for most of the

structures examined. Where Fint is not zero, this fact is noted.

In (12) all the quantities on the right-hand side are known

except for q, whose evaluation is discussed in x3.2. �R is the

difference between the actual bond length, R, and the ideal

bond length, Re. If Re is not known it may be permissible to

approximate it in the pre-exponential term by the observed

bond length, R, particularly in the limit �R! 0.

2.5. Bond force constants

The force constant, K, of a bond is given by

K � ÿdFe=dR: �13�
Consider the case where there are no internal strains (Fint = 0)

so that Fe = Fext and where the displacements from equilibrium

are small. K is found by differentiating (12) with respect to R,

K � �koq2=R2���1=B��R=Re�2 exp�ÿ�R=B� ÿ 2=R�: �14�
In the limit of small displacements where R ' Re, (14) reduces

to

K � �koq2=R2
e��1=Bÿ 2=Re�: �15�

However, although (15) may be valid for small changes in the

bond length, the exponential term can be approximated by 1.0

only if �R is very small. Even when �R = 0.1 AÊ , the expo-

nential term is 0.76, signi®cantly different from 1.0.

2.6. Bond compressibilities

The application of external pressure, P, causes the bond to

be shortened resulting in the bond exerting an additional

force, Fext, on the terminal atoms equal and opposite to the

force applied to the bond by the external pressure,

P � Fext=gR2: �16�
The term gR2 is the effective area supported by the bond, g

being a geometric factor of the order 1 that represents the

ratio of this area to the square of the bond length. Values of g

for a number of simple structures are derived in Appendix A.

The sign in this equation is positive since the application of a

positive pressure to the crystal results in the bonds exerting an

increased repulsive force on the terminal atoms.

Substituting for Fext from (12) (for Fint = 0) into (16) gives

the pressure as a function of R, Re and q,

P � ÿ�koq2=gR4��1ÿ �R=Re�2 exp�ÿ�R=B��; �17�
where R is the bond length under pressure and, as before,

�R = R ÿ Re.
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resulting from intrinsic electronic anisotropies within the atoms (e.g. Jahn±
Teller distortions or stereoactive lone pairs) and those caused by steric effects,
i.e. the constraint that arises when it is impossible to ®nd an arrangement of
the atoms in space that allows all the bonds to adopt their ideal lengths, as
predicted using (1), (2) and (3) (see x2.4). In such structures some bonds are
stretched and some compressed. Except as noted, the discussion in this paper
is con®ned to structures in which these constraints are absent.
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Differentiating (17) with respect to R gives

dP=dR � ÿ �koq2=gR4���2=R� 1=B��R=Re�2
� exp�ÿ�R=B� ÿ 4=R�: �18�

In the limit of zero pressure, (18) can be simpli®ed by setting

(R/Re)
2exp(ÿ�R/B) = 1.0,

dP=dR � ÿ�koq2=gR4
e��1=Bÿ 2=Re�: �19�

This approximation is valid for |�R| < 0.03 AÊ , the range

typically found at the pressures attained in the laboratory.

However, larger compressions are known and if, �R =ÿ0.1 AÊ ,

the expression on the right hand side of (19) is a factor of two

too small.

The bond compressibility, �, is de®ned as

� � ÿ�1=R��dR=dP�: �20�
Therefore, from (19) and (20) the bond compressibility at

zero pressure is

� � gR3
e=�koq2�1=Bÿ 2=Re��: �21�

Hazen & Finger (1979) showed that for many high-

symmetry structures in which the bulk compressibility is

determined by the compressibility of the bonds,

kbhRi3=s2ZcZa ' 7:5 Mbar AÊ
3

electronsÿ2; �22�
where kb is the bulk modulus, Zc and Za are the formal cation

and anion charges, respectively, and s is an ionicity factor.

Hazen & Finger's empirical equation (22) is shown to be

approximately equivalent to (21) in Appendix B.

3. Comparison with experiment

3.1. Initial test

The above analyses generate two equations, (15) and (21),

that can be compared with experiment. The unknown value of

q can be eliminated between them to give

gRe=�K � 100 GPa AÊ
2

nNÿ1; �23�
which contains only experimentally accessible quantities and

therefore provides a useful starting point for assessing the

validity of the model. The results for a variety of different

high-symmetry structures are listed in Table S1,4 and the

average for each structure type, together with its standard

deviation, is given in Table 1. The sources of the experimental

values of the force constants, Ko, and bond compressibility, �o,

are described in xx3.2 and 3.3, respectively, where the devia-

tions from the theoretical values are discussed. The global

average, 114 (� = 48), is satisfactorily close to the expected

value of 100, but the standard deviation is large and the range

of individual values runs from a low of 40 for InSb to a high of

237 for LiF. Part of the variation is related to the structure

type, particularly for the ¯uorite, rutile and corundum struc-

tures where the ratios are systematically too high, but part of

the variation depends on the individual atoms involved, as

discussed in the following sections.

3.2. Force constants and the evaluation of q

For the high-symmetry compounds used in this study there

are not many evaluations of simple bond stretching force

constants that can be directly compared with (15), because the

bonds are weak and the stretching modes tend to mix with

lattice modes and are dif®cult to isolate. However, Urey±

Bradley stretching force constants have been evaluated from

IR and Raman spectra for a number of stronger bonds and

Brown et al. (1997) have shown that there is an approximate

relationship between the observed force constant Ko and the

bond ¯ux, S (in electrons), given by

Ko � aSÿ �bÿ exp�ÿaS=b��; �24�
where a = 450 N mÿ1 electronsÿ1 and b = 140 N mÿ1. The

points shown Fig. 2 of Brown et al. (1997) display considerable

scatter but the authors were able to de®ne upper and lower

limits to this scatter using (24) with a = 505 N mÿ1 electronsÿ1,

b = 100 N mÿ1, and a = 405 N mÿ1 electronsÿ1, b = 200 N mÿ1,

respectively. In general, the upper limit gave better predictions

for the force constants of bonds between small hard ions, while

the lower limit worked better for large soft ions. Since the

bond ¯uxes, S, are readily determined for the high-symmetry

structures by assuming that all the bonds are equivalent, a set

of `observed' stretching force constants was calculated using

(24).

In (15) all the values on the right-hand side are known

except for q. One might expect q to be the same as the formal

charge that would be used in a Madelung summation over the

whole structure. However, in this model part of the atomic

charge is used to shield the bond from the bulk of the crystal

so that the effective charge is reduced. Thus q will be less than

the formal ionic charge, V, but might be expected to be related

to the bond ¯ux, S. Since the form that q2 takes cannot be

determined theoretically, we propose the function

q2 � �8S=3�3=2; �25�
designed to give a satisfactory ®t between the calculated force

constants, K, and the `observed' force constants, Ko, as noted

below. With this function, the values of q range from 0.54

electrons for S = 0.167 to 1.54 electrons for S = 0.667, as shown

Table 1
Test of equation (23) which predicts gR/(�K) = 100 GPa AÊ 2 nNÿ1.

Structure type
Number of
structures hgR/(�oKo)i

Standard
deviation Remarks

Fluorite 6 164 20
CsCl 5 115 21
NaCl 48 98 48
Rutile 8 184 20
Corundum 4 138 15
Sphalerite 5 107 40
Wurtzite 7 143 70 122 � 38

omitting BeO
All compounds 83 114 48

4 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN0031). Services for accessing these data are described
at the back of the journal.



in Fig. 3. In the unphysical limit of V < 0.1, q ' V, consistent

with the notion that the screening provided by the ligands

becomes more important the larger the bond ¯ux. It must be

emphasized that there is no physical justi®cation for (25) and

that other expressions can be found that give almost as good a

®t.

The values of K and Ko for individual bonds in the sample

of 83 high-symmetry structures are given in Table S1 and their

ratios, K/Ko, averaged over all structures belonging to the

same structure type, are shown in Table 2. While the global

average is close to the expected value of 1 (a consequence of

the ®tting of q2), there is signi®cant variation, most of which

can be attributed to the approximate nature of (24) and hence

to the systematic errors in the value of Ko. For example, (24)

predicts that all alkali halides have the same value of Ko

(1.69 nN AÊ ÿ1) since they all have the same bond ¯ux.

However, the values calculated using (15) range from

2.88 nN AÊ ÿ1 for LiF to 1.10 nN AÊ ÿ1 for RbI. For small hard

ions, the correct value of Ko should be close to the upper limit,

calculated from (24) to be 2.73 nN AÊ ÿ1, which is close to the

value of 2.88 nN AÊ ÿ1 predicted by (15) and (25) for LiF.

Similarly, for large soft ions the value of Ko should be near the

lower limit of 1.03 nN AÊ ÿ1, close to the value of 1.10 nN AÊ ÿ1

predicted by (15) and (25) for RbI. Much of the variation in

the values of K/Ko can thus be ascribed to the uncertainties in

the value assumed for Ko. Unfortunately, the parameters

derived for (24) do not allow a quantitative correction to be

made for this systematic effect.

The high ratio found for the wurtzite structures is mostly

attributable to the large value of K given by (15) and (25) for

BeO (17.0 nN AÊ ÿ1) compared with the value of 11.3 nN AÊ ÿ1

for Ko given by (24). However, as before, the maximum value

of Ko (16.0 nN AÊ ÿ1) would be more appropriate and this gives

good agreement. Substituting this value brings the average

ratio for the wurtzite structures acceptably close to 1.0.

Three other structure types in Table 2 have average K/Ko

ratios which deviate signi®cantly from 1.0. As indicated in the

remarks in the table, this deviation can be attributed to the

sample containing either mostly hard atoms, leading to ratios

that could be as large as 1.6, or soft atoms, leading to ratios

that could be as low as 0.6. Since all the discrepancies can be

attributed to the systematic errors in the assumed `observed'

values Ko, (15) and (25) are expected to give a better

prediction of the stretching force constant than the empirical

correlation of (24).

3.3. Bond compressibility in high-symmetry structures

The bond compressibility is given by (21), where q2 is

assumed to have the value (8S/3)3/2 proposed in the previous

section.

Values of the compressibilities of 83 different high-

symmetry structures are given in Table S1. The experimental

values, �o, are derived from the polyhedral bulk moduli

compiled by Hazen & Finger (1979) from crystal bulk moduli

drawn from a variety of sources. Most are accurate to around

5%, although a few are considerably less accurate, as noted. In

calculating the bond compressibilities we have assumed a

uniform contraction of all parts of the structure even when, for

example in the case of the corundum structures, the bonds do

not contract equally (see x3.4). The average ratios of the bond

compressibilities, �, calculated from (21), to the observed

bond compressibilites, �o, are summarized by structure type in

Table 3.

The values of the average ratios �/�o all lie within experi-

mental uncertainty of 1.0, except for the eight-coordinated

structures ¯uorite and CsCl, where the theory gives values that

are systematically 50% larger than the observed value, not

only for the averages shown in Table 3, but for each of the

compounds individually. The reason for this discrepancy is not

clear, but it would be removed if the energy of compression

were absorbed by 12 bonds per cation rather than the eight

that are actually present (see Appendix A). The large value of

gRe/(�oKo) for ¯uorite in Table 1 can be attributed to this

discrepancy, but for the CsCl structures the large value �/�o is

combined with the low value of K/Ko to give a value of gRe/

(�oKo) in Table 1 that is close to the expected value.
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Figure 3
The effective charge, q, in electrons as a function of bond ¯ux, S,
calculated according to (25). The broken lines represent the extremes of
q = V (for six-coordination) and q = S.

Table 2
Comparison of the theoretical, K, and observed, Ko, force constants.

Structure type
Coordination
number

Number of
structures hK/Koi Remarks

Fluorite 8 6 1.05
CsCl 8 5 0.75 Mostly soft atoms
NaCl 6 48 0.90
Rutile 6 8 1.39 Mostly hard atoms
Corundum 6 4 1.36 Mostly hard atoms
Wurtzite 4 5 1.19 1.10 with corrected

BeO
Sphalerite 4 7 0.94
All structures 83 0.99 (� = 0.28)
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Within each structure type some systematic variation can be

seen. For example, the alkali halides show �/�o ratios of 1.33,

1.20, 1.15 and 1.12 for F, Cl, Br and I, respectively, but no

systematic variation with the cation. A possible reason for this

lies in the assumption that all bonds have B = 0.37 AÊ , the value

which Brown & Altermatt (1985) determined from observed

bond lengths mostly in oxides using (1) and (3). However, B

cannot be determined very precisely and Brown & Altermatt

(1985) found that any value between 0.32 and 0.42 AÊ would

give a satisfactory ®t for most bonds to oxygen. The agreement

between the observed and calculated bond compressibilities of

the alkali halides would be considerably improved if B were

equal to 0.30, 0.32, 0.33 and 0.335 AÊ for ¯uorides, chlorides,

bromides and iodides, respectively.

The other notable mis®ts are CuCl and AgI with the

sphalerite structure where, surprisingly, the bonds are much

less compressible than the model predicts, an effect that is

likely to be the result of the different character of the bonds in

these compounds.

3.4. Compressibilities of individual bonds

The bond compression can be calculated in more complex

structures assuming the pressure is applied uniformly to all

bonds. In this case (19) can be written

�R � ÿgR4
e=�koq2�1=Bÿ 2=Re�� ��P �26�

This equation holds in the limit of zero pressure, which is

adequate for most bonds given the experimental uncertainties

in the measured bond lengths. In the case of complex struc-

tures, g should have a different value for every bond, but since

there is no obvious way to calculate g, a value of 1 is assumed.

While values of g different from 1.0 may be the reason why

some bond compressions differ from the predicted values,

there are usually more plausible explanations which are

discussed below. If (8S/3)3/2 is substituted for q2, as in the

previous examples, then the expression multiplying �P

contains only Re and known constants.

The maximum strains observed and

calculated for a variety of bonds in

different low-symmetry compounds

are given in Table 4. In each case the

pressure range is also given and

further details can be found in Table

S2.

The predicted compressions for

bonds with valences larger than 0.7 lie

within the limits of experimental

uncertainty, therefore, only the

weaker bonds can usefully be

compared with experiment. For most

of the compounds, agreement

between the calculated and observed

values of �R is satisfactory. The

reasons for the exceptions, marked

with a dagger, are discussed below.

3.4.1. BeO. This compound

provides a chance to compare the

predictions of Table 3 with those of

Table 4 by recognizing that �R is

proportional to �. The values of �R

calculated using (26) are �50% lower

than the observed values, but the

compressibility calculated using (21)

(0.0020 GPaÿ1) is �50% higher than

that determined from the bulk

modulus [0.0013 (3) GPaÿ1]. The

discrepancy is attributable to the

different values of g used in (21)

Table 3
Comparison of theoretical, �, and observed, �o, bond compressibilities.

The standard uncertainty (s.u.) in �o is around 5% unless otherwise stated.

Structure type
Coordination
number

Number of
compounds g h�/�oi Remarks

Fluorite 8 6 1.15 1.56 See text
CsCl 8 5 0.58 1.54 See text
NaCl 6 48 1.00 1.04
Rutile 6 8 1.53 1.00
Corundum 6 4 1.38 1.17 s.u. �15%
Sphalerite 4 5 2.31 1.14 0.95 omitting

CuCl, AgI
Wurtzite 4 7 2.31 1.16 s.u. �15%
All structures 83 1.12 s.u. �15%

Table 4
Observed and predicted [see (26)] bond strains over the applied pressure range.

�R(obs) is the difference between the shortest and longest reported bond lengths. Owing to experimental
uncertainties, these are not necessarily the bond lengths reported at the highest and lowest pressures.

Bond Req (AÊ ) S ÿ�R(obs)+ (AÊ ) ÿ�R(pred) (AÊ )

BeO (ICSD-62726) Pressure range 5.0 GPa
BeÐO 1.646 0.49 0.012 (2) 0.007
BeÐO 1.655 0.48 0.013 (5) 0.008
Al2O3 (ICSD-9770) Pressure range 4.6 GPa
AlÐO 1.856 0.53 0.010 (2) 0.009
AlÐO 1.971 0.39 0.004 (2) 0.017²
FeTiO3 (ICSD-30670) Pressure range 4.61 GPa
FeÐO 2.078 0.39 0.026 (2) 0.020
FeÐO 2.201 0.28 0.025 (2) 0.040²
TiÐO 1.874 0.85 0.005 (2) 0.004
TiÐO 2.087 0.48 0.015 (2) 0.015
SiO2 quartz (ICSD-100341) Pressure range 6.14 GPa
SiÐO 1.605 1.05 0.005 (3) 0.003
SiÐO 1.614 1.03 0.005 (3) 0.003
CaMg(CO3)2 (ICSD-66333) Pressure range 4.69 GPa
CaÐO 2.381 0.34 0.042 (2) 0.044
MgÐO 2.081 0.35 0.025 (3) 0.024
CÐO 1.287 1.24 0.004 (3) 0.001
Ni2SiO4 (ICSD-200129) Pressure range 3.82 GPa
NiÐO 2.061 0.33 0.020 (3) 0.021
SiÐO 1.657 0.91 0.004 (3) 0.002
Mg3Al2(SiO4)3 (ICSD-200341) Pressure range 4.0 GPa
MgÐO 2.188 0.26 0.032 (4) 0.038
MgÐO 2.341 0.17 0.034 (4) 0.090²
AlÐO 1.875 0.50 0.012 (5) 0.008
SiÐO 1.626 0.99 0.007 (4) 0.002
ZrSiO4 (ICSD-100239) Pressure range 4.83 GPa
ZrÐO 2.127 0.58 0.013 (2) 0.010
ZrÐO 2.270 0.40 0.007 (2) 0.022²
SiÐO 1.616 1.02 0.005 (2) 0.002

² The calculated compression differs by more than 3� from the observed strain.



(2.31) and (26) (1.00). However, the differences between the

observed and predicted values of �R are not signi®cant at the

3� level.

3.4.2. Al2O3. This structure illustrates the problems asso-

ciated with calculations based on a model in which all bonds

are assumed to show equal compressive strain. Two Al atoms

are brought close together across a face shared between two

AlO6 octahedra. The repulsion between the Al atoms causes

each of them to be displaced from the center of its octahedron,

giving three short and three long AlÐO bonds. The

compression of the long AlÐO bond is restricted by the need

to simultaneously compress the short AlÐAl contact. The

compression of the short bond is predicted correctly by (26),

but the long bond is much less compressible than predicted. In

spite of the failure of the equal strain assumption, the

compressibility calculated using (21) (0.0016 GPaÿ1) is the

same as the experimental compressibility derived from the

bulk modulus [0.0014 (2) GPaÿ1].

3.4.3. FeTiO3. Ilmenite has an ordered arrangement of the

corundum structure with short FeÐTi contacts across the

shared octahedral face. As the bonds are longer, the repulsion

between the cations is not as large as in the case of Al2O3, but,

even so, the weaker FeÐO bonds to the shared face do not

contract as much as predicted by (26).

3.4.4. Mg3Al2(SiO4)3. The garnet pyrope is an example of a

structure in which the bonds show internal strain (Fint not

equal to zero). The Mg atom is eight-coordinate and occupies

a cavity that is too large (the MgÐO bonds are stretched). The

assumptions made in deriving (26) tend to overestimate the

expected compression and the high symmetry of this structure

prevents the two bonds from compressing independently.

3.4.5. ZrSiO4: zircon. As in the case of garnet, the eight-

coordinate Zr forms four long and four short bonds with the

compression of the ZrO8 coordination sphere constrained by

the shorter (least compressible) of the two bonds.

3.5. Calculation of bond valences in structures under
pressure

In addition to providing information on the strain produced

in a bond under pressure, (26) also provides a method of

correcting the bond-valence parameter R0 used in (3) to

calculate bond valences, when the bond length has been

measured under pressure. Since the parameter R0 is the

notional length of a bond of unit valence, it is only necessary to

replace Re in (26) by R0 and S by 1.0. As before, in the absence

of any better information, g is set to 1.0 giving the relatively

simple expression for dR0/dP shown below, (27),

dR0=dP � 10ÿ4R4
0=�1=Bÿ 2=R0�AÊ GPaÿ1: �27�

4. Conclusions

In this paper we have explored the forces that are exerted

between neighbouring atoms in the localized bond model of a

compound. Brown et al. (1997) have previously shown that this

model can be used to relate the thermal expansion of bonds to

the bond force constant and hence to the bond ¯ux. This paper

extends this work by showing that the bond force constant

itself can be derived from a simple physical model of the bond

and that the model also accounts for the compressibility of

bonds subject to hydrostatic pressure. As the earlier study

showed, the bond properties, such as thermal expansion or

compressibility, are not independent of the structure in which

they appear. To the extent that they depend on the bond ¯ux,

they depend on the way in which the atoms are linked to form

the bond network, but they are also affected by steric

constraints which may limit the strain a particular bond can

display. The simple equations derived in x2 provide a ®rst

estimate of the force constant and compressibility of a given

bond, but the observed compressibility requires that the steric

constraints also be taken into account.

The bond force model presented here offers the possibility

of exploring the internal strains as well as dynamical aspects of

a crystal using an intuitive localized bond model, its simplicity

providing insights that more complex models cannot. Such

analyses are beyond the scope of the present study whose

purpose is to present the model and demonstrate how well it

works in accounting for two straightforward force-related

properties.

APPENDIX A
Determination of g

A1. Derivation of g

The geometric factor, g, is calculated by considering that the

work done in compressing a crystal is used entirely to

compress the bonds. It is assumed that the atoms in the high-

symmetry binary compounds have ideally symmetric coordi-

nation with all bonds having the same length, R. It is also

assumed that compression reduces all bonds uniformly and

that the bond angles do not change; g is then evaluated at zero

pressure, but the difference is small over the pressure ranges

accessible to measurement.

The work done in compressing the crystal is

P dV � NF dR; �28�
where P is the pressure, V the volume of the unit cell, N the

number of bonds in the unit cell and F the force required to

compress the bond whose length is R.

The volume of the cell (except for triclinic cells) is given by

V � abc sin  �29�
where a, b, c and  are cell constants (assuming a unique c

axis).

These are related to the bond length, R, by

a �AR

b �BR

c �CR; �30�
where A, B and C are geometric constants that depend on the

structure.
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Therefore

V � ABC sin R3 �31�
and

dV � 3ABC sin R2dR: �32�
Substituting into (28)

3ABC sin PR2 dR �NF dR

F � �3ABC sin R2=N�P: �33�
Recognizing that F = ÿFext in (16),

g � 3ABC sin =N �34�

A2. Evaluation of g

APPENDIX B
Reconciliation with the equation of Hazen & Finger

Hazen & Finger (1979) showed that the empirical formula (35)

gives a good ®t to experiment.

kbR3=�s2ZcZa� � 7:5 MBar AÊ
ÿ3
; �35�

where kb is the bulk modulus, s an ionicity factor and Za the

anion charge. The bulk modulus is related to the linear (bond)

compressibility by (36)

kb � 1=�3�� �36�
so that (35) can be rewritten as

� � R3=�2250s2ZcZa�GPaÿ1; �37�
where the distances are given in AÊ and the charges in elec-

trons.

Noting that the value of s2Za is approximately 0.8 (range

0.75±1.0) using the values of s given by Hazen & Finger (1979),

(37) reduces to

� � R3=�1800Zc�GPaÿ1; �38�
which can be compared with (21),

� � gR3=�koq2�1=Bÿ 2=R��: �39�
Noting that (1/B ÿ 2/R) has a value of approximately 1.7 AÊ ÿ1,

setting g = 1 and substituting for ko [see (4)] gives

� � R3=�3910q2�GPaÿ1: �40�
Eliminating � between (38) and (40) gives

q2=Zc � 0:46;

in satisfactory agreement with values ranging from 0.46 to 0.52

for Zc > 1 (0.25 for Zc = 1) using q2 calculated from (25) for the

structures listed in Table S1.
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Structure ABC N g

Fluorite A = B = C = 4/31/2 32 1.15
sin  = 1

CsCl A = B = C = 2/31/2 8 0.58
sin = 1

NaCl A = B = C = 2 24 1.00
sin  = 1

Rutile A = B = (21/2 + 1) 1 6 1.54 Cation±cation distance
included in N

C = 21/2

sin  = 1
Corundum A = B = 61/2 78 1.38 Cation±cation distance

included in N
C = 4(31/2)
sin  = 0.866

Sphalerite A = B = C = 4(31/2) 16 2.31
sin = 1

Wurtzite A = B = (8/3)1/2 8 2.31
C = 8/3
sin = 0.866


